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IN V1 DUPLEX CELLS,
 THE FORM OF RESPONSES TO 

GRATINGS DEPENDS ON 
TEMPORAL AND SPATIAL 

FREQUENCY



Introduction
  The majority of neurons in visual cortical area V1 in monkey have 
overlapping increment and decrement activating regions (ARs) and 
diverse nonlinear properties ("duplex" cells). However, we have 
recently shown that many of them exhibit a significant quasi-linear 
(fundamental, F1) harmonic in the responses to drifting sinusoidal 
luminance gratings. At the same time, flashing bars, moving edges 
and counterphase gratings evoke mostly on-off, or frequency 
doubled (second harmonic, F2) responses. This mixture of quasi-
linear and nonlinear properties suggests that the temporal 
dynamics of interactions between increment and decrement ARs 
and surround play an important role in shaping the responses of 
duplex cells. 
  The purpose of this study was to investigate how the form of the 
responses to gratings depends on stimulus attributes: spatial and 
temporal frequency and width. Such a parametric study is needed 
for understanding of duplex cells' receptive field organization and 
functionality. 



Methods

  Extracellular responses of V1 neurons were recorded while the 
monkey viewed visual stimuli during a fixation task. Stimuli were 
grating patches of different spatial and temporal frequency and 
width, optimally oriented and centered on the receptive field. Eye 
position was monitored using scleral search coil and recorded to 
file. We restricted our analysis to periods of relatively stable fixation 
(intersaccadic intervals) that were identified using an automated 
saccade-detection algorithm (Fig. 1A). The harmonic content of the 
response was estimated using a fast Fourier transform (FFT) of the 
concatenated spike train (Fig. 1B). 



Fig. 1Data selection and analysis
A:  Selecting data segments from one behavioral trial

B:  Analysis of 
concatenated spike train
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Results
  Some cells that responded with F1 modulation to high temporal 
frequency gratings gave frequency doubled (F2, Fig. 2A) or mixed (F1, 
F2, F3, Fig. 2B) responses at low temporal frequencies. In other cells, 
little or no effect of temporal frequency on the responses harmonic �
content was found (Fig. 2C). 
  Most cells showed strong dependence of the response form on the 
grating spatial frequency and width. The three main patterns were: 1) F2 
responses to gratings of very low spatial frequency and/or small patch 
width (Fig. 3A, B). This behavior can be explained by time variations of 
the absolute flux in the receptive field (Fig. 4). 2) Decrease of the F2 and 
increase of the F1 component with increase of spatial frequency and/or 
width (Fig. 5). 3) Decrease of the F1 component and appearance of a 
"subF1" (i.e. less than F1) modulation with further increase of spatial 
frequency (Fig. 6). 
  The responses of many cells to stationary gratings of middle to high 
spatial frequency unexpectedly exhibited robust modulation similar to the 
"subF1" modulation elicited by drifting gratings (Fig. 7). 



Fig. 2Temporal frequency effects

A:  Frequency doubling
(F2 harmonic) in response
to 1 Hz drifting grating,
but quasi-linear 
(F1 harmonic) response to 
5 Hz grating (not shown). 

C:  No effect - relative
amplitude of harmonics
remains constant 
across temporal
frequency.

B:  Mixed F1,F2,F3 
harmonics in response
to 1 Hz drifting grating, 
but only strong F1 
component to 5 Hz
grating (not shown).
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Fig. 3Spatial frequency-dependent doubling
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Fig. 4Spatial frequency-dependent doubling
Modeling frequency doubling using linear summation of absolute flux 
in contrast-invariant receptive field
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Fig. 5Spatial frequency effect
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Fig. 6Spatial frequency effect
"SubF1" modulation to drifting grating of high spatial frequency
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Fig. 7Response to stationary grating
Unexpected modulation in response to the "constant" 
 - except for the eye movements - stimulus
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It's unlikely that the  
observed modulation is the 
direct result of motion 
imposed by the eye 
movements: the mean eye 
velocity in this trial was 
only 0.17 deg/s, which 
corresponds to 0.5 Hz 
modulation at 3 cpd SF.
(TF= SF.Velocity)
 



Conclusions

In duplex cells, the harmonic content of the grating 
response depends on stimulus attributes.

Current models of V1 receptive fields do not capture 
the observed diversity of duplex cells' behavior.

These results support the notion of an elaborate 
spatiotemporal structure of duplex cells' receptive 
fields.


